
Deploying Applications with Docker on AWS Using GitHub Actions
Welcome to my blog
6 min read
Deploying Applications with Docker on AWS Using GitHub Actions
Modern applications require automated deployment pipelines to streamline DevOps workflows. In this guide, we will deploy a Dockerized application to AWS using GitHub Actions, implementing CI/CD for development, staging, and production environments. Additionally, we will integrate feature flags for controlled releases.
Prerequisites
Before we begin, ensure you have the following:
- An AWS account
- Docker installed locally
- A GitHub repository
- AWS CLI configured with IAM credentials
- A container registry (Amazon Elastic Container Registry - ECR)
- A running ECS cluster (Elastic Container Service) or EC2 instance
Step 1: Dockerizing the Application
Create a Dockerfile
in your project root:
FROM node:18-alpine
WORKDIR /app
COPY package.json .
RUN npm install
COPY . .
CMD ["npm", "start"]
EXPOSE 3000
Build and Test Locally
docker build -t my-app .
docker run -p 3000:3000 my-app
Step 2: Setting Up AWS ECR
Create an ECR repository:
aws ecr create-repository --repository-name my-app --region us-east-1
Authenticate Docker with ECR:
aws ecr get-login-password --region us-east-1 | docker login --username AWS --password-stdin <AWS_ACCOUNT_ID>.dkr.ecr.us-east-1.amazonaws.com
Step 3: GitHub Actions CI/CD Pipeline
Create a .github/workflows/deploy.yml
file:
name: Deploy to AWS
on:
push:
branches:
- main
- staging
- develop
jobs:
deploy:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
- name: Authenticate with AWS
run: |
aws configure set aws_access_key_id ${{ secrets.AWS_ACCESS_KEY_ID }}
aws configure set aws_secret_access_key ${{ secrets.AWS_SECRET_ACCESS_KEY }}
- name: Login to Amazon ECR
run: |
aws ecr get-login-password --region us-east-1 | docker login --username AWS --password-stdin <AWS_ACCOUNT_ID>.dkr.ecr.us-east-1.amazonaws.com
- name: Build and Push Docker Image
run: |
IMAGE_URI=<AWS_ACCOUNT_ID>.dkr.ecr.us-east-1.amazonaws.com/my-app:${{ github.sha }}
docker build -t $IMAGE_URI .
docker push $IMAGE_URI
- name: Deploy to ECS
run: |
aws ecs update-service --cluster my-cluster --service my-service --force-new-deployment
Step 4: Feature Flags Implementation
For feature flagging, we can use LaunchDarkly, Unleash, or custom environment variables. Example using LaunchDarkly:
import { initialize } from 'launchdarkly-node-client-sdk';
const ldClient = initialize('LAUNCHDARKLY_SDK_KEY', { key: 'user-key' });
ldClient.waitForInitialization().then(() => {
const isFeatureEnabled = ldClient.variation('new-feature', false);
console.log('Feature Enabled:', isFeatureEnabled);
});
Set environment variables in GitHub Actions:
- name: Set Environment Variables
run: echo "LAUNCHDARKLY_SDK_KEY=${{ secrets.LAUNCHDARKLY_SDK_KEY }}" >> $GITHUB_ENV
Step 5: Configuring Multi-Environment Pipelines
Modify .github/workflows/deploy.yml
to handle different branches:
deploy:
runs-on: ubuntu-latest
environment: ${{ github.ref == 'refs/heads/main' && 'production' || github.ref == 'refs/heads/staging' && 'staging' || 'development' }}
Store environment-specific configurations in GitHub Environments:
- Development:
develop
- Staging:
staging
- Production:
main
Conclusion
By following this guide, we have:
- Dockerized our application
- Pushed images to AWS ECR
- Set up GitHub Actions for automated deployment
- Used feature flags for controlled releases
- Configured multi-environment pipelines
This setup ensures scalable, efficient, and controlled deployments with feature flagging for seamless updates.
Ready to work together?
Lets hop on a zoom call and discuss your project at no cost.